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Abstract

Numerous publications on the modeling of disk brake squeal can be found in the literature. Recent publications describe

the onset of disk brake squeal as an instability of the trivial solution resulting from the non-conservative friction forces

even for a constant friction coefficient. Therefore, a minimal model of disk brake squeal must contain at least two degrees

of freedom. A literature review of minimal models shows that there is still a lack of a minimal model describing the basic

behavior of disk brake squeal which can easily be associated to an automotive disk brake.

Therefore, a new minimal model of a disk brake is introduced here, showing an obvious relation to the technical system.

In this model, the vibration of the disk is taken into account, as it plays a dominant role in brake squeal. The model is

analyzed with respect to its stability behavior, and consequences in using it in the optimization of disk brake systems are

discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

It is commonly accepted by engineers and scientists working in the field of brake noise, that squeal in a disk
brake is initiated by an instability due to the friction forces leading to self-excited vibrations. The self-excited
brake system then oscillates, reaching a limit cycle. The reason for the onset of instability has been put forward
on different reasons, for example, the change of the friction characteristic with the speed of the contact points
[1–3] or the change of the relative orientation of the disk and the friction pads leading to a modification of the
friction force [4] and a flutter instability which is found even with a constant friction coefficient [5–14]. A
broad overview on the phenomenon and the modeling of disk brake squeal is given in Ref. [15]. Some of these
models and mechanisms have, however, not been validated by physical experiments. It is of course well known
that a negative slope in the friction characteristic leads to instability and self-excitation. It is, however, also
known from laboratory experiments that there may be instability and self-excitation leading to squeal even
in the absence of a negative slope of the friction characteristic. The authors believe that the flutter insta-
bility which may even occur with a constant coefficient of friction in most cases is a more realistic cause of
brake squeal.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Brakes are commonly modeled as multibody systems (MBS) or using finite element (FE) methods resulting
in models with high numbers of degrees of freedom [7–9]. Nevertheless, for a basic understanding of the
excitation mechanism, the influence of system parameters and for active control of brake squeal [7–10], models
with a low number of degrees of freedom are more convenient. In the literature a number of such models can
be found, containing two or three degrees of freedom; the models by Shin et al. [3], Hoffmann et al. [11], Popp
et al. [12] and Brommundt [13] will be discussed in the following literature review of minimal models.

The result of this review is that a minimal model easily to be associated to an automotive disk brake and
representing the basic behavior of disk brake squeal is still missing. A new two-degree-of-freedom model for
disk brake squeal is developed in this paper, complementing the existing models in the sense described above.
The basic excitation mechanism as found in this model is implemented in MBS [7–9] and can be implemented
in FE models assuming a velocity-independent friction characteristic. This makes the new minimal model
valuable for a better understanding of the basis of the brake squeal phenomenon.

2. Literature review of minimal models

2.1. The model by Shin et al.

The model by Shin et al. [3] is a recent example of models probably found in hundreds of publications,
describing the onset of self-excited vibrations by a falling friction characteristic. A model, based on this
assumption, can produce self-excited vibrations even in the case of one degree of freedom. Vibrations of the
disk (note that symmetric disks have double eigenfrequencies) play a dominant role in the case of brake squeal.
Since squealing very often is mono-frequent, a discretization of the disk using two eigenmodes corresponding
to one eigenfrequency close to the frequency of squeal gives a suitable description of the problem. The authors
of the paper [3] intend to give a detailed discussion of damping effects in the pads and in the disk, also
considers nonlinear effects and do not focus on the derivation of minimal models for brake squeal.
Nevertheless, it is typical for describing self-excited vibrations based on a falling friction characteristic.

The system shown in Fig. 1 represents the pad and the disk as single-degree-of-freedom systems connected
through a sliding friction interface. Provided that the relative velocity between the pad and disk is always positive
and considering the friction characteristic given in Fig. 2, the resulting equations of motion can be written as

m1 €xp þ c1 _xp �Nað _xp � _xdÞ þ k1xp ¼ Nðms � av0Þ, (1)

m2 €xd þ c2 _xd �Nað _xd � _xpÞ þ k2xd ¼ �Nðms � av0Þ. (2)
Fig. 1. Minimal model by Shin et al.

Fig. 2. Minimal model by Shin et al.: friction characteristic.
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The stability analysis for the linear system can be performed using the Hurwitz criterion. Obviously the trivial
solution may become unstable, as there are negative damping terms due to the falling friction characteristic.

An actual automotive disk brake does, however, look quite different than this system. In fact, there are
virtually no obvious similarities between the two. Although the assumption of a negative friction characteristic
is somewhat artificial, it is introduced here to produce negative damping terms and therefore instabilities to be
interpreted as squealing. Other authors have therefore dealt with models of friction oscillators assuming a
constant or even an increasing friction characteristic, which then have at least two degrees of freedom. Some of
these models are discussed in the following.
2.2. The model by Hoffmann and Gaul

In Ref. [11], Hoffmann and Gaul present a minimal model for clarifying the physical mechanisms
underlying the mode-coupling instability of self-excited friction induced oscillations. It can therefore also be
interpreted as a model for disk brake squeal. The model is shown in Fig. 3. A conveyor belt with constant
velocity vB is pushed with a constant normal force F N against a block modeled as a particle m. The block is
suspended by two linear springs with stiffnesses k1 and k2 and, in addition, a third linear spring with stiffness
k3 representing the normal contact stiffness between the block and the moving belt. A Coulomb-type friction
force FF with constant m is assumed. Considering small perturbations around the steady sliding state and
approximating the friction force by FF ¼ mk3y the resulting equations of motion are

m 0

0 m

" #
€x

€y

" #
þ

k11 k12 � mk3

k21 k22

" #
x

y

" #
¼

0

0

" #
ð3Þ

with

k11 ¼ k1 cos
2 a1 þ k2 cos

2 a2,

k12 ¼ k21 ¼ k1 sin a1 cos a1 þ k2 sin a2 cos a2,

k22 ¼ k1 sin
2 a1 þ k2 sin

2 a2 þ k3.

Comparing these equations with Eqs. (1) and (2), it can be seen that velocity proportional terms are not
present here. Nevertheless, instability of the trivial solution can occur due to the asymmetry in the
displacement proportional terms, which is discussed broadly in Ref. [11].

Also this model looks quite different from an actual disk brake, but, as was pointed out in Ref. [11], this was
not the authors’ main concern.
Fig. 3. Minimal model by Hoffmann and Gaul.
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2.3. The model by Popp et al.

Popp et al. also give a model with two degrees of freedom (see e.g. in Ref. [12]). As the model by Hoffmann
and Gaul, it does also not require a falling characteristic of the friction coefficient for instability. Fig. 4 shows
this model. It has a direct resemblance to the two-degree-of-freedom model by North [5] and may be
considered as its extension. In Ref. [12] Popp’s model is described as resulting from a flexible disk performing
structural vibrations, discretized via two sinusoidal modes and focussing only on the section of the disk in
contact with the pads. The generalized coordinates are the displacement x and the rotation j of that section.
The pads are located at a distance s from the center of mass and the elastic and damping properties of the disk
are represented by springs with stiffnesses c1; c2 and dampers with constants d1; d2, respectively. The equations
of motion are given in Ref. [12] as

m 0

0 J

� � €x

€j

" #
þ

d1 0

0 d2

" #
_x

_j

" #
þ

c1 þ c3 �c3s

�c3ðs� mhÞ c2 þ c3ðs
2 � mhsÞ

" #
x

j

" #
¼

0

0

� �
. (4)

These equations of motion are derived under the assumption, that the pads always stay in contact with the
disk. A preload N0 on both pads is therefore necessary, which would change the equations of motion to

m 0

0 J

" #
€x

€j

" #
þ

d1 0

0 d2

" #
_x

_j

" #

þ
c1 þ c3 �c3s

�c3ðs� mhÞ c2 þ c3ðs
2 þ mhsÞ þ 2N0ðhð1þ m2Þ þ msÞ

" #
x

j

" #
¼

0

0

" #
. ð5Þ

It can be seen, that in contrast to the model of Hoffmann and Gaul, the preload does now effect the equations
of motion, as they cause a j-proportional term.

A stability analysis of the model without preload is also given in Ref. [12] showing the necessary conditions
for instability

sa0 and m4
s

h
40. (6)

From the equations of motion (4) it is also obvious that there must be a non-vanishing distance s for the
occurrence of instability.

In Popp’s model it is far easier to recognize similarities with an actual disk brake than in the previous
models. From experiments it can clearly be observed, that the vibrations of the disk play an essential role in
the occurrence of squeal. Therefore, vibrations of the disk should be taken into consideration in a minimal
model of disk brake squeal.

Nevertheless the question remains, how to interpret the distance s. The problem to be described is a disk
fixed in its center and performing vibrations in permanent contact with two pads. The location of these pads
can, e.g. be described by polar coordinates including a distance r from the center and an angle c for the spatial
orientation. It is obvious that a change of the angle c should not affect the stability behavior of the model,
Fig. 4. Minimal model by Popp et al.
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which should be invariant to c. This is not the case in the model described here, as in the linearized case s is
given by s ¼ cr.

2.4. Models with three degrees of freedom

In Ref. [13] Brommundt describes a three-degree-of-freedom model shown in Fig. 5. This model is
somewhat similar to that of Hoffmann and Gaul (but was published earlier) and associates an additional
degree of freedom to the conveyor belt. In Ref. [13], it is shown, that even in case of a monotonously
increasing friction characteristic instability can occur in this model. In the equations of motion of that model,
also asymmetric displacement-proportional terms are present.

In Ref. [14] Schmieg and Vielsack also give a three-degree-of-freedom model for brake squeal, resulting in
equations of motion with asymmetric displacement proportional terms which can produce instabilities of the
trivial solution. This model is much closer to the one of Hoffmann and Gaul than to that of Popp, as it does
not focus on vibrations of the disk, but on vibrations of the pads and the caliper.

3. The new two-degree-of-freedom model for disk brake squeal

The previous discussion of models from the literature has shown, that a simple minimal model easily to be
associated with automotive disk brakes is still missing. As far as the authors know the model by Popp et al.
comes closest to that aim. The need of a distance s for getting instability, the missing preload N0, which is
essential for the contact between pads and disk and the exclusive modeling of a section of the disk, give room
for further improvement of this model.

In what follows, the authors suggest a new two-degree-of-freedom model, in which some of the salient
features of a disk brake are captured in a rather obvious way.

3.1. General description of the new model

The new model depicted in Fig. 6 consists of a rigid disk with thickness h and central inertia tensor

H ¼

Y 0 0

0 Y 0

0 0 F

2
64

3
75 (7)

with respect to the body fixed di frame. The disk is hinged in a spherical joint in its center of mass and visco-
elastically supported by rotational springs (rotational stiffness kt) and rotational dampers (damping coefficient
dt) such that it can perform wobbling motions while rotating with constant angular speed about its nominal
rotation axis.

Experimental investigations of real automotive disk brakes clearly show that the disk does usually not
perform a rigid body wobbling motion, rather undergoing an elastic vibration, e.g. with three to five nodal
diameters in the frequency range from 1 to 10 kHz. In the context of this paper, the wobbling motion of a disk
Fig. 5. Model by Brommundt.
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Fig. 6. Disk brake model with wobbling disk.

Fig. 7. Coordinate systems.
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was chosen in order to produce a minimal model easily to be understood. For the purpose of the stability
discussion given later, the system parameters were chosen such that the inertia and elastic properties of the
wobbling disk represent two orthogonal elastic eigenmodes with three nodal diameters of a real disk,
experimentally investigated by the authors in Refs. [7–10]. It is shown in Ref. [16], that the equations of
motion derived by assuming a rotating elastic Kirchhoff plate discretized by two orthogonal modes
corresponding to one eigenfrequency are almost the same to those derived for the present model. In this
context, it is also shown that a proper discussion of the kinematics of that problem requires substantial
additional effort, making the elastic disk less suitable for the simplest type of a minimal model.

A Newtonian (inertial) coordinate system is defined by the Cartesian coordinate system with unit vectors ni

(i ¼ 1; 2; 3). The disk is in contact with two pads with preload N0, mounted at distance r from the center of the
disk. The preload is considered to be large enough so that there is always contact between the pads and the
disk. The pads are fixed in the n1; n2-plane and can move only in the n3-direction, with restoring forces
generated by two springs with stiffness k and with two dampers with damping constant d. The orientation of
the disk is described by the Cardan-angles qi ði ¼ 1; 2; 3Þ and two intermediate coordinate systems ai and
bi ði ¼ 1; 2; 3Þ are introduced (see Fig. 7). The resulting angular velocity of the disk with respect to the
Newtonian system is then given by

NxD ¼ _q1n1 þ _q2a2 þ _q3b3. (8)
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It is assumed that there is a non-holonomic constraint such that

NxD � n3 ¼ O ¼ const. (9)

holds and the corresponding constraint torque is MA ¼MAn3.
The general analysis of the nonlinear model is performed using the commercial software Autolev based on

Kane’s algorithm for the derivation of equations of motion, which is described in Ref. [17].

3.2. Determination of the contact points

As the pads are fixed in the n1; n2-plane, the contact points can be described on the one hand by the position
vectors

p1 ¼ �r n2 þ h1 �
h

2

� �
n3, (10)

p2 ¼ �rn2 þ h2 þ
h

2

� �
n3, (11)

where h1 and h2 are the corresponding displacements of the pads with respect to the static equilibrium and
therefore the displacements of the springs. The pads are assumed to be located at distance r in negative n2-
direction from the center of the disk. Generally, any arbitrary point in the n1; n2-plane with distance r from the
center can be chosen without any influence on the stability results discussed in Section 4.

On the other hand, the contact points must be points on the surface of the disk, and therefore the position
vectors have to fulfill the relations

p1 ¼ d11d1 þ d12d2 �
h

2
d3, (12)

p2 ¼ d21d1 þ d22d2 þ
h

2
d3. (13)

Eqs. (10)–(13) give six relations for the six unknowns h1, h2, d11, d12, d21 and d22 which can therefore be
calculated as functions of q1, q2 and q3. The expressions for the solutions in the general nonlinear case are, as
all following results, quite lengthy and therefore omitted in this paper. After linearizing for small angles q1 and
q2, the position vectors can be expressed in the intermediate bi-frame as

p1 ¼
h

2
q2b1 þ �r�

h

2
q1

� �
b2 �

h

2
b3, (14)

p2 ¼ �
h

2
q2b1 þ �rþ

h

2
q1

� �
b2 þ

h

2
b3 (15)

and the two linearized displacements are

h1 ¼ h2 ¼ �rq1. (16)

3.3. Determination of the relative velocity of the contact points

The velocity of the two material points on the surface of the disk in actual contact with the pad, can be
determined by

v1 ¼
NxD � p1, (17)

v2 ¼
NxD � p2, (18)

as the velocity of the center of the disk is zero. The velocity of the contact points of the pads are obtained
by differentiating the position vectors p1 and p2 from Eqs. (12) and (13) with respect to time in the
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inertial system

v01 ¼

Nd

dt
p1, (19)

v02 ¼

Nd

dt
p2. (20)

The direction of the friction force is then given by the unit vector of the relative velocity of the two bodies in
contact. The directions of the friction forces acting on the respective pads are therefore given by

r1 ¼
v1 � v01
jv1 � v01j

(21)

and

r2 ¼
v2 � v02
jv2 � v02j

. (22)

These two unit vectors can be linearized for small angles q1, q2 as well as for small angular velocities _q1, _q2 and
are then given by

r1 ¼ �b1 �
h

2r

_q1

_q3

þ q2

� �
b2, (23)

r2 ¼ �b1 þ
h

2r

_q1

_q3

þ q2

� �
b2 (24)

expressed in the intermediate bi-frame (linearized unit vectors).

3.4. Determination of the contact forces

The resulting forces acting on the upper pad sketched in Fig. 8 and are given by

Fp1 ¼ F t1r1 � Fn1d3 þN0n3 � k h1n3 � d _h1n3 þH11n1 þH12n2, (25)

while the forces on the lower pad are given by

Fp2 ¼ F t2r2 þ Fn2d3 �N0n3 � k h2n3 � d _h2n3 þH21n1 þH22n2, (26)

where Hij are forces due the supports (constraints) of the pads in the n1; n2-plane. The four contact forces
Ft1;F t2;F n1 and F n2 are determined by Eqs. (27)–(30) which are given by the assumed Coulomb friction law

Ft1 ¼ mFn1, (27)

Ft2 ¼ mFn2 (28)
Fig. 8. Contact forces at the upper pad.
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with constant friction coefficient m, and the balance of forces in n3-direction for both pads

Fp1 � n3 ¼ 0, (29)

Fp2 � n3 ¼ 0. (30)

The resulting contact forces on the disk are then calculated from Eqs. (27)–(30) as

FD1 ¼ �F t1r1 þ Fn1d3, (31)

FD2 ¼ �F t2r2 � Fn2d3. (32)

3.5. Equations of motion

The resulting torque on the disk is given by the torque due the viscoelastic suspension, the constraint torque
MA and the torque of the contact forces with respect to the center of the disk. It can be written as

M ¼ �ktq1n1 � ktq2a2 � dt _q1n1 � dt _q2a2 þMAn3 þ p1 � FD1 þ p2 � FD2. (33)

The balance of angular momentum

Nd

dt
HNxD ¼M (34)

and the non-holonomic constraint (9) lead to a constant driving torque

MA ¼ 2mrN0 (35)

and the equations of motion for a two-degree-of-freedom model for disk brake squeal

Y 0

0 Y

" #
€q1

€q2

" #
þ

1

2
mN0

h2

rO
þ 2dr2 þ dt FO

�FO� mdhr dt

2
64

3
75 _q1

_q2

" #

þ
kt þ 2kr2 þN0h

1

2
mN0

h2

r

�mðkhrþ 2N0rÞ kt þ ð1þ m2ÞN0h

2
64

3
75 q1

q2

" #
¼

0

0

" #
. ð36Þ

As mentioned in Section 3.2, the pads can be placed at any arbitrary point in the n1; n2-plane with distance r from the
center, without any influence on the stability results, as can be shown by a corresponding coordinate transformation.

3.6. Discussion of the equations of motion

The equations of motion (36) shall now be discussed in more detail. From the equations of motion it is
obvious that the velocity-dependent terms contain both gyroscopic terms, not associated to any energy
dissipation, as well as damping terms. The gyroscopic terms do not come as a surprise, due to the wobbling
motion of the rotating disk. Additionally to the terms caused by the damping of the brake pads and the
wobbling disk, there is a linear damping term in the first equation, resulting just from kinematic relations and
the friction forces. For the displacement proportional terms, it can be observed that there are asymmetric
coupling terms, making the system a candidate for self-excited vibrations, which will be discussed in more
detail in the following section. It should be noted, that the linearization of Eq. (34) is only possible if the speed
of the disk O is high enough to rule out stick–slip phenomena at the contact points. That means, that the
directions of the friction forces (21) and (22) have to be well defined for all times.

4. Stability analysis

In order to study the stability of Eq. (36) realistic parameters have to be carefully chosen as the stability
results described in the following show a high sensitivity to those parameters. Extensive experimental
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investigations were undertaken for parameter identification on a test rig at TU Darmstadt with a state-of-the-
art, mass produced, brake. Corresponding parameters were identified for several multibody models. In
Ref. [10], the authors presented a four-degree-of-freedom model which was successfully used to actively
suppress squeal on the test rig with that system parameters. Corresponding parameters were also identified in
Ref. [18] in the authors’ lab, where the following parameters for the two-degree-of-freedom model are
extracted:

h ¼ 0:02m; kt ¼ 1:88� 107 Nm; N0 ¼ 3:00 kN; Y ¼ 0:16 kg=m2,

r ¼ 0:13m; k ¼ 6:00� 106 N=m; O ¼ 5p s�1; F ¼ 2Y,

m ¼ 0:6; dt ¼ 0:1Nms; d ¼ 5:00N s=m,

which are representative of the authors’ experimental work.
Some of the parameters will be varied to show their influence on the stability of the trivial solution.

The ansatz

qðtÞ ¼ q̂elt (37)

is substituted in the equation of motion (36) to find the eigenvalues l of the linearized system. Fig. 9 shows the
root locus of the eigenvalues for varying speed of the disk. Above a certain critical speed Ocrit there exist
eigenvalues with positive real part, the trivial solution becomes unstable and the system shows self-excited
vibrations which can be interpreted as squeal. Since brake squeal mainly occurs at low speed and relatively low
braking pressure, e.g. a roll-out in front of a red traffic light, the critical speed of the system is an important
parameter in matters of brake squeal.

One of the usual modifications carried out by the manufacturers to improve a squealing brake are changes
in the brake pads. Fig. 10 shows the critical speed Ocrit for varying stiffness k of the brake pads. One can see
that the critical speed increases for decreasing stiffness of the brake pads. In contrast to that, the critical speed
does not significantly depend on the friction coefficient m within this model.

From Eq. (35) follows the driving torque MA ¼ 2mrN0. This means that the brake torque and therefore the
braking moment depend on the product mrN0. This raises the question whether the brake torque should be
generated by a low braking pressure (N0) and a high friction coefficient (m) or, vice versa, with view to the
avoidance of squeal. Fig. 11 shows the influence of the combination of these two parameters on the critical
speed. From this picture it is obvious that brake torque should be generated by a high normal force and a
Fig. 9. Root locus of the eigenvalues for varying O (upper half-plane shown only).
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Fig. 10. Critical speed for varying k.

Fig. 11. Critical speed for varying m and N0 with constant braking torque.
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relatively low coefficient of friction in order to avoid brake squeal. However, a low friction coefficient limits
the capability of the brake system, in particular for emergency stops.

Another important design parameter is the radius r of the brake disk. The capability of the brake increases
with increasing radius of the brake disk, but the radius of the disk is limited by the dimensions of the wheel
rim, and its mass is part of the unsprung mass of the vehicle. Fig. 12 shows the dependence of the critical speed
on r and N0, with the product rN0 held constant. In contrast to Fig. 11, there exists a minimum of the critical
speed, i.e. an unfavorable combination of r and N0.

It should finally be mentioned that all the stability results strongly depend on the chosen parameters.
Especially the viscous damping term due to the kinematics of the frictional contact in Eq. (36), and thus the
geometry of the system (r and h) plays an important role.
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Fig. 12. Critical speed for varying r and N0 with constant braking torque.
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5. Conclusions

Minimal models containing two or three degrees of freedom, especially the models by Shin [3], Hoffmann
and Gaul [11], Popp [12] and Brommundt [13] were discussed in this paper. This discussion showed that a
minimal model describing the basic behavior of disk brake squeal which can easily be associated with a disk
brake, is still missing. A new minimal model was therefore introduced, containing a wobbling disk in point
contact with two pads. The parameters of the wobbling disk were chosen such that it represents two
orthogonal modes of an elastic disk corresponding to the same eigenfrequency.

The equations of motion were derived and linearized using the commercial software Autolev. The model
can be easily associated with a disk brake and its stability behavior is (in contrast to Ref. [12]) independent
from the circumferential position of the pads. The analysis regarding the stability of the trivial solution shows
the influence of the main parameters of the system. As basic parameters, those identified in Ref. [18] for a mass
produced brake were used.

The minimal model presented in this paper represents a system easy to visualize. As seen in Chapter 3, the
derivation of the nonlinear equations of motion is somewhat complicated but straight forward. The minimal
model gives an insight into an excitation mechanism of disk brake squeal, which can also be observed in MBS
or FE models with a high number of degrees of freedom.
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